# Deep-Compression-AlexNet **Repository Path**: william_gzl/Deep-Compression-AlexNet ## Basic Information - **Project Name**: Deep-Compression-AlexNet - **Description**: Deep Compression on AlexNet - **Primary Language**: Unknown - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-25 - **Last Updated**: 2020-12-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README - March 15, 2019: for our most updated work on model compression and acceleration, please reference: [ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware](https://arxiv.org/pdf/1812.00332.pdf) (ICLR’19) [AMC: AutoML for Model Compression and Acceleration on Mobile Devices](https://arxiv.org/pdf/1802.03494.pdf) (ECCV’18) [HAQ: Hardware-Aware Automated Quantization](https://arxiv.org/pdf/1811.08886.pdf) (CVPR’19) [Defenstive Quantization: When Efficiency Meet Robustness](https://openreview.net/pdf?id=ryetZ20ctX) (ICLR'19) # Deep Compression on AlexNet This is a demo of [Deep Compression](http://arxiv.org/pdf/1510.00149v5.pdf) compressing AlexNet from 233MB to 8.9MB without loss of accuracy. It only differs from the paper that Huffman coding is not applied. Deep Compression's video from [ICLR'16 best paper award presentation](https://youtu.be/kQAhW9gh6aU) is available. # Related Papers [Learning both Weights and Connections for Efficient Neural Network (NIPS'15)](http://arxiv.org/pdf/1506.02626v3.pdf) [Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding (ICLR'16, best paper award)](http://arxiv.org/pdf/1510.00149v5.pdf) [EIE: Efficient Inference Engine on Compressed Deep Neural Network (ISCA'16)](http://arxiv.org/pdf/1602.01528v1.pdf) If you find Deep Compression useful in your research, please consider citing the paper: @inproceedings{han2015learning, title={Learning both Weights and Connections for Efficient Neural Network}, author={Han, Song and Pool, Jeff and Tran, John and Dally, William}, booktitle={Advances in Neural Information Processing Systems (NIPS)}, pages={1135--1143}, year={2015} } @article{han2015deep_compression, title={Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding}, author={Han, Song and Mao, Huizi and Dally, William J}, journal={International Conference on Learning Representations (ICLR)}, year={2016} } **A hardware accelerator working directly on the deep compressed model:** @article{han2016eie, title={EIE: Efficient Inference Engine on Compressed Deep Neural Network}, author={Han, Song and Liu, Xingyu and Mao, Huizi and Pu, Jing and Pedram, Ardavan and Horowitz, Mark A and Dally, William J}, journal={International Conference on Computer Architecture (ISCA)}, year={2016} } # Usage: export CAFFE_ROOT=$your caffe root$ python decode.py bvlc_alexnet_deploy.prototxt AlexNet_compressed.net $CAFFE_ROOT/alexnet.caffemodel cd $CAFFE_ROOT ./build/tools/caffe test --model=models/bvlc_alexnet/train_val.prototxt --weights=alexnet.caffemodel --iterations=1000 --gpu 0 # Test Result: I1022 20:18:58.336736 13182 caffe.cpp:198] accuracy_top1 = 0.57074 I1022 20:18:58.336745 13182 caffe.cpp:198] accuracy_top5 = 0.80254