# OpenManus-RL **Repository Path**: wangpengabc/OpenManus-RL ## Basic Information - **Project Name**: OpenManus-RL - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-07 - **Last Updated**: 2025-11-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # OpenManus-RL πŸ€— Dataset (OpenManus-RL) OpenManus-RL is an open-source initiative collaboratively led by __Ulab-UIUC__ and __MetaGPT__ . This project is an extended version of the original [@OpenManus](https://github.com/FoundationAgents/OpenManus) initiative. Inspired by successful RL tunning for reasoning LLM such as Deepseek-R1, QwQ-32B, we will explore new paradigms for RL-based LLM agent tuning, particularly building upon foundations. We are committed to regularly updating our exploration directions and results in a dynamic, live-streaming fashion. All progress, including rigorous testing on agent benchmarks such as GAIA, AgentBench, WebShop, and OSWorld, and tuned models, will be openly shared and continuously updated. We warmly welcome contributions from the broader communityβ€”join us in pushing the boundaries of agent reasoning and tool integration! Code and dataset are now available! The `verl` submodule has been integrated for enhanced RL training capabilities.
marble
## πŸ“– Table of Contents - [OpenManus-RL](#openmanus-rl) - [πŸ”” News](#-news) - [Current Team Members](#current-team-members) - [How to Contribute](#how-to-contribute) - [Roadmap](#roadmap) - [Method](#method) - [Reasoning Models Exploration](#reasoning-models-exploration) - [Alternative Rollout Strategies](#alternative-rollout-strategies) - [Environment and Benchmark](#environment-and-benchmark) - [Post-Training Strategies](#post-training-strategies) - [Training of Agent Reward Model](#training-of-agent-reward-model) - [Test-time Scaling of Trajectories](#test-time-scaling-of-trajectories) - [Action Space Awareness and Strategic Exploration](#action-space-awareness-and-strategic-exploration) - [Integration with RL Tuning Frameworks](#integration-with-rl-tuning-frameworks) - [Dataset](#dataset) - [Dataset Overbiew](#dataset-overview) - [Data Instances](#data-instances) - [Running](#Running) - [Related Work](#related-work) - [Agent tuning](#agent-tuning) - [Tool using](#tool-using) - [Agent tuning instruction dataset](#agent-tuning-instruction-dataset) - [RL tuning](#rl-tuning) - [Benchmark](#benchmark) - [Similar Code](#similar-code) - [Acknowledgement](#acknowledgement) - [Community Group](#community-group) - [Citation](#citation) - [Documentation](#documentation) --- ## πŸ”” News - **[2025-03-09]** 🍺 We collect and opensource our Agent SFT dataset at [Huggingface](https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL), go try it! - **[2025-03-08]** πŸŽ‰ We are collaborating with [@OpenManus](https://github.com/mannaandpoem/OpenManus) from Metagpt to work on this project together! - **[2025-03-06]** πŸ₯³ We(UIUC-Ulab) are announcing our live-streaming project, OpenManus-RL. ## Current Team Members [@Kunlun Zhu](https://github.com/Kunlun-Zhu)(Ulab-UIUC), [@Muxin Tian](https://github.com/realtmxi), [@Zijia Liu](https://m-serious.github.io/)(Ulab-UIUC), [@Yingxuan Yang](https://github.com/zoe-yyx),[@Jiayi Zhang](https://github.com/didiforgithub)(MetaGPT), [@Xinbing Liang](https://github.com/mannaandpoem), [@Weijia Zhang](https://github.com/CharlieDreemur), [@Haofei Yu](https://github.com/lwaekfjlk)(Ulab-UIUC), [@Cheng Qian](https://qiancheng0.github.io/),[@Bowen Jin](https://github.com/PeterGriffinJin), --- # How to Contribute We wholeheartedly welcome suggestions, feedback, and contributions from the community! Feel free to: We welcome contributions, including fine-tuning codebase, tuning dataset, environment setup, and computing resources. Create issues for feature requests, bug reports, or ideas. Submit pull requests to help improve OpenManus-RL. Or simply reach out to us for direct collaboration. Important contributors will be listed as co-authors to our paper. # Roadmap 1. Agent Environment Support Setting up LLM agent environment for online RL tunning. 2. Agent Trajectories Data Collection Connect to specialized reasoning models such as deepseek-r1, QwQ-32B for more complex inference tasks to collect comprehensive agent trajectories. 3. RL-Tuning Model Paradigm Provide an RL fine-tuning approach for customizing the agent's behavior in our agent environment. 4. Test on Agent Benchmarks Evaluate our framework on agentic benchmark such as Webshop, GAIA, OSWorld, AgentBench
marble
## Method Our method proposes an advanced reinforcement learning (RL)-based agent tuning framework designed to significantly enhance reasoning and decision-making capabilities of large language models (LLMs). Drawing inspiration from RAGEN's Reasoning-Interaction Chain Optimization (RICO), our approach further explores novel algorithmic structures, diverse reasoning paradigms, sophisticated reward strategies, and extensive benchmark environments. ### Reasoning Models Exploration To benchmark the reasoning capabilities effectively, we evaluate multiple state-of-the-art reasoning models: - **GPT-O1** - **Deepseek-R1** - **QwQ-32B** Each model provides unique reasoning capabilities that inform downstream optimization and training strategies. ### Alternative Rollout Strategies We experiment with a variety of rollout strategies to enhance agent planning efficiency and reasoning robustness, including: - **Tree-of-Thoughts (ToT)**: Employs tree-based reasoning paths, enabling agents to explore branching possibilities systematically. - **Graph-of-Thoughts (GoT)**: Utilizes graph structures to represent complex reasoning dependencies effectively. - **DFSDT (Depth-First Search Decision Trees)**: Optimizes action selection through depth-first search, enhancing long-horizon planning. - **Monte Carlo Tree Search (MCTS)**: Explores reasoning and decision paths probabilistically, balancing exploration and exploitation effectively. These methods help identify optimal rollout techniques for various reasoning tasks. ### Diverse Reasoning Formats We specifically analyze and compare several reasoning output formats, notably: - **ReAct**: Integrates reasoning and action explicitly, encouraging structured decision-making. - **Outcome-based Reasoning**: Optimizes toward explicit outcome predictions, driving focused goal alignment. These formats are rigorously compared to derive the most effective reasoning representation for various tasks. ### Post-Training Strategies We investigate multiple post-training methodologies to fine-tune agent reasoning effectively: - **Supervised Fine-Tuning (SFT)**: Initializes reasoning capabilities using human-annotated instructions. - **Generalized Reward-based Policy Optimization (GRPO)**: Incorporates: - **Format-based Rewards**: Rewards adherence to specified reasoning structures. - **Outcome-based Rewards**: Rewards accurate task completion and goal attainment. - **Proximal Policy Optimization (PPO)**: Enhances agent stability through proximal updates. - **Direct Preference Optimization (DPO)**: Leverages explicit human preferences to optimize agent outputs directly. - **Preference-based Reward Modeling (PRM)**: Uses learned reward functions derived from human preference data. ### Training of Agent Reward Model We train specialized agent reward models using annotated data to accurately quantify nuanced reward signals. These models are then leveraged to guide agent trajectory selection during both training and evaluation phases. ### Test-time Scaling of Trajectories During the inference phase, trajectory scaling methods are implemented, allowing agents to flexibly adapt to varying task complexities, thus enhancing robustness and performance in real-world scenarios. ### Action Space Awareness and Strategic Exploration Agents are equipped with action-space awareness, employing systematic exploration strategies designed to navigate complex action spaces effectively, ultimately maximizing expected rewards. ### Integration with RL Tuning Frameworks We integrate insights and methodologies from leading RL tuning frameworks, including: - **Verl** - **Integrated as Git Submodule** - Our primary RL framework, providing advanced training capabilities for agent optimization - **TinyZero** - **OpenR1** - **Trlx** ### Verl Integration The `verl` submodule is fully integrated into OpenManus-RL, providing: - **Advanced RL Algorithms** - PPO, DPO, and custom reward modeling - **Efficient Training** - Optimized for large language model fine-tuning - **Flexible Configuration** - Easy customization of training parameters - **Production Ready** - Battle-tested framework from Bytedance Through these frameworks, agents can effectively balance exploration and exploitation, optimize reasoning processes, and adapt dynamically to novel environments. In summary, our method systematically integrates advanced reasoning paradigms, diverse rollout strategies, sophisticated reward modeling, and robust RL frameworks, significantly advancing the capability and adaptability of reasoning-enhanced LLM agents.
marble
# Dataset [**OpenManusRL-Dataset**](https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL) combines agent trajectories from [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct), [Agent-FLAN](https://huggingface.co/datasets/internlm/Agent-FLAN) and [AgentTraj-L(AgentGym)] with features: - πŸ” **ReAct Framework** - Reasoning-Acting integration - 🧠 **Structured Training** - Separate format/reasoning learning - 🚫 **Anti-Hallucination** - Negative samples + environment grounding - 🌐 **6 Domains** - OS, DB, Web, KG, Household, E-commerce ### Dataset Overview | Source | Trajectories | Avg Turns | Key Features | |--------|--------------|-----------|--------------| | [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct) | 1,866 | 5.24 | Multi-task QA, CoT reasoning | | [Agent-FLAN](https://huggingface.co/datasets/internlm/Agent-FLAN) | 34442 | 3-35 | Error recovery patterns, diverse real-world tasks| [AgentTraj-L](https://huggingface.co/datasets/AgentGym/AgentTraj-L) | 14485 | 3-35 | interactive environments and tasks | **Combined** | 50793 | 4-20 | Enhanced generalization, uniform format with broader task coverage | ### Supported Tasks - **text-generation**: ReAct-style instruction following - **conversational-ai**: Tool-augmented dialogues ### Languages English ## Data Instances **ReAct Pattern Example**: ```json { "id": "os_0", "conversations": [ {"role": "user", "content": "Count files in /etc"}, {"role": "assistant", "content": "Think: Need reliable counting method\nAct: bash\n```bash\nls -1 /etc | wc -l\n```"}, {"role": "user", "content": "OS Output: 220"}, {"role": "assistant", "content": "Think: Verified through execution\nAct: answer(220)"} ] } ``` # Running ## OpenManus-RL A simplified library for Supervised Fine-Tuning (SFT) and GRPO tunning of language models for agentic system. (developed upon [Verl](https://github.com/volcengine/verl) from Bytedance) We are still laboriously developing this part, welcome feedback. ## Installation ### Prerequisites This project uses git submodules. After cloning the repository, make sure to initialize and update the submodules: ```bash # Clone the repository with submodules git clone --recursive https://github.com/OpenManus/OpenManus-RL.git # Or if already cloned, initialize and update submodules git submodule update --init --recursive ``` ### Environment Setup First, create a conda environment and activate it: ```bash # Create a new conda environment conda create -n openmanus-rl python=3.10 -y conda activate openmanus-rl ``` Then, install the required dependencies: ```bash # Install PyTorch with CUDA support pip3 install torch torchvision # Install vllm for efficient inference # Install the main package pip install -e .[vllm] # flash attention 2 pip3 install flash-attn --no-build-isolation pip install wandb ``` ## Environment Setup ### 1. Webshop To set up the WebShop environment for evaluation: ```bash # Change to the agentenv-webshop directory cd openmanus_rl/environments/env_package/webshop/webshop/ # Create a new conda environment for WebShop conda create -n agentenv_webshop python==3.10 -y conda activate agentenv_webshop # Setup the environment bash ./setup.sh -d all ``` ### 2. ALFWorld ```bash conda acitvate openmanus-rl pip3 install gymnasium==0.29.1 pip3 install stable-baselines3==2.6.0 pip install alfworld ``` Download PDDL & Game files and pre-trained MskRCNN detector (will be stored in `~/.cache/alfworld/`): ``` alfworld-download -f ``` Use `--extra` to download pre-trained checkpoints and seq2seq data. ## Quick Start ### 1. Environment Setup Make sure you have the required environments set up (see Environment Setup section above). ### 2. Data Preparation Download the OpenManus-RL dataset from [Hugging Face](https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL). ### 3. Training Examples #### ALFWorld RL Training (PPO) ```bash conda activate openmanus-rl bash scripts/ppo_train/train_alfworld.sh ``` # Related Work ## Agent tuning 1. **Offline Training of Language Model Agents with Functions as Learnable Weights**. [[paper](https://arxiv.org/pdf/2402.11359)] 2. **FIREACT : TOWARD LANGUAGE AGENT FINE-TUNING**. [[paper](https://arxiv.org/pdf/2310.05915)] 3. **AgentTuning: Enabling Generalized Agent Abilities for LLMs**. [[paper](https://arxiv.org/pdf/2310.12823)] 4. **ReAct Meets ActRe: When Language Agents Enjoy Training Data Autonomy**. [[paper](https://arxiv.org/pdf/2403.14589)] 5. **UI-TARS: Pioneering Automated GUI Interaction with Native Agents**. [[paper](https://arxiv.org/pdf/2501.12326#page=16.83)] 6. **ATLAS: Agent Tuning via Learning Critical Steps**. [[paper](https://arxiv.org/pdf/2503.02197)] ## Tool using 1. **Toolformer: Language Models Can Teach Themselves to Use Tools**. [[paper](https://arxiv.org/pdf/2302.04761)] 2. **ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs**. [[paper](https://arxiv.org/abs/2307.16789)] ## Agent tuning instruction dataset 1. **Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models**. [[paper](https://arxiv.org/pdf/2403.12881)] 2. **AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning**. [[paper](https://arxiv.org/pdf/2402.15506)] ## RL tuning 1. **Training Language Models to Follow Instructions with Human Feedback**. [[paper](https://arxiv.org/pdf/2305.18438)] 2. **Deepseekmath: Pushing the Limits of Mathematical Reasoning in Open Language Models**. [[paper](https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf)] 3. **DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning**. [[paper](https://arxiv.org/pdf/2501.12948)] ## Benchmark: 1. **AgentBench: Evaluating LLMs as Agents**. [paper](https://arxiv.org/abs/2308.03688) 2. **WebShop: Towards Scalable Real-World Web Interaction with Autonomous Agents**. [paper](https://arxiv.org/pdf/2207.01206) 3. **GAIA: a benchmark for General AI Assistants**. [paper](https://arxiv.org/abs/2311.12983) 4. **ALFWorld: Aligning Text and Embodied Environments for Interactive Learning**. [paper](https://arxiv.org/abs/2010.03768) ## Similar framework 1. **RAGEN: Training Agents by Reinforcing Reasoning**. [[code](https://github.com/ZihanWang314/RAGEN)] 2. **verl-agent**. [[code](https://github.com/langfengQ/verl-agent)] ## Offline RL 1. **D4RL: Datasets for Deep Data-Drive Reinforcement Learning**. [[paper](https://arxiv.org/abs/2004.07219)] 2. **Offline Reforcement Learning with Implicit Q-Learning**. [[paper](https://arxiv.org/abs/2110.06169)] 3. **Behavior Proximal Policy Optimization**. [[paper](https://arxiv.org/abs/2302.11312)] # Acknowledgement We extend our thanks to ulab-uiuc (https://ulab-uiuc.github.io/) and Openmanus (https://github.com/mannaandpoem/OpenManus)) team from MetaGPT for their support and shared knowledge. Their mission and community contributions help drive innovations like OpenManus forward. We also want to gratefully thank Verl (https://github.com/volcengine/verl) and verl-agent(https://github.com/langfengQ/verl-agent) for their opensource. We welcome all developers who are interested in this project can reach out to (kunlunz2@illinois.edu) Stay tuned for updates and the official release of our repository. Together, let's build a thriving open-source agent ecosystem! # Community Group Join our networking group on Feishu and share your experience with other developers!
OpenManus-RL 亀桁羀
# Citation Please cite the following paper if you find OpenManus helpful! ```bibtex @misc{OpenManus, author = {OpenManus-RL Team}, title = {OpenManus-RL: Open Platform for Generalist LLM Reasoning Agents with RL optimization}, year = {2025}, organization = {GitHub}, url = {https://github.com/OpenManus/OpenManus-RL}, } ```

Star History Chart

## Project Structure ``` OpenManus-RL/ β”œβ”€β”€ verl/ # Verl RL framework submodule β”œβ”€β”€ openmanus_rl/ # Main OpenManus-RL library β”œβ”€β”€ scripts/ # Training and evaluation scripts β”œβ”€β”€ configs/ # Configuration files β”œβ”€β”€ environments/ # Agent environment implementations β”œβ”€β”€ docs/ # Documentation └── examples/ # Usage examples ``` ## Documentation - [Development Guide (English)](docs/DEVELOPMENT_GUIDE_EN.md) - [Development Guide (Chinese)](docs/DEVELOPMENT_GUIDE_ZH.md) - [Training Process Overview (English)](docs/README.md) - [Training Process Overview (Chinese)](docs/README_ZH.md)