# RepNet-MDNet-VehicleReID **Repository Path**: tangkai2020/RepNet-MDNet-VehicleReID ## Basic Information - **Project Name**: RepNet-MDNet-VehicleReID - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-07-17 - **Last Updated**: 2021-04-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RepNet-Vehicle-ReID Vehicle re-identification implementing RepNet ## Vehicle ReID task:
![](https://github.com/CaptainEven/RepNet-Vehicle-ReID/blob/master/VehicleReIDTask.png) ## Basic principle for vehicle ReID task:
Using a two-branch deep convolutional network to project raw vehicle images into an Euclidean space where distance can be directly used to measure the similarity of arbitrary two vehicles. For simplicity, triplet loss or coupled cluster loss is replaced here by arc loss which is widely used in face recognition. # Test result ![](https://github.com/CaptainEven/RepNet-Vehicle-ReID/blob/master/TestResult.png) ## Network structure:
![](https://github.com/CaptainEven/RepNet-Vehicle-ReID/blob/master/RepNet.png) ![](https://github.com/CaptainEven/RepNet-Vehicle-ReID/blob/master/RepNet2.png) ## Reference:
[Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Relative_Distance_CVPR_2016_paper.pdf)
[Learning a repression network for precise vehicle search](https://arxiv.org/pdf/1708.02386.pdf)
## Dataset:
[VehicleID dataset](https://pan.baidu.com/s/1JKOysKjrlgReuxZ2ONCmUQ)
## Pre-trained model [model](https://pan.baidu.com/s/1vJiwBfR3f9Zc9NCuUbmEsw)
extract code: 62wn