# OpenSTL
**Repository Path**: qqydss/OpenSTL
## Basic Information
- **Project Name**: OpenSTL
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: OpenSTL-Lightning
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-01-29
- **Last Updated**: 2024-01-29
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
| Moving MNIST | Moving FMNIST |
| :---: | :---: |
|
|
|
| Moving MNIST-CIFAR | KittiCaltech |
| :---: | :---: |
|
|
|
| KTH | Human 3.6M |
| :---: | :---: |
|
|
|
| Traffic - in flow | Traffic - out flow |
| :---: | :---: |
|
|
|
| Weather - Temperature | Weather - Humidity |
| :---: | :---: |
|
|
|
| Weather - Latitude Wind | Weather - Cloud Cover |
| :---: | :---: |
|
|
|
| BAIR Robot Pushing | Kinetics-400 |
| :---: | :---: |
|
|
|
## License
This project is released under the [Apache 2.0 license](LICENSE). See `LICENSE` for more information.
## Acknowledgement
OpenSTL is an open-source project for STL algorithms created by researchers in **CAIRI AI Lab**. We encourage researchers interested in video and weather prediction to contribute to OpenSTL! We borrow the official implementations of [ConvLSTM](https://arxiv.org/abs/1506.04214), [PredNet](https://arxiv.org/abs/1605.08104), [PredRNN](https://dl.acm.org/doi/abs/10.5555/3294771.3294855) variants, [E3D-LSTM](https://openreview.net/forum?id=B1lKS2AqtX), [MAU](https://arxiv.org/abs/1811.07490), [PhyDNet](https://arxiv.org/abs/2003.01460), [MMVP](https://arxiv.org/abs/2308.16154), and [SwinLSTM](https://arxiv.org/abs/2308.09891).
## Citation
If you are interested in our repository or our paper, please cite the following paper:
```
@inproceedings{tan2023openstl,
title={OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning},
author={Tan, Cheng and Li, Siyuan and Gao, Zhangyang and Guan, Wenfei and Wang, Zedong and Liu, Zicheng and Wu, Lirong and Li, Stan Z},
booktitle={Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2023}
}
@inproceedings{gao2022simvp,
title={Simvp: Simpler yet better video prediction},
author={Gao, Zhangyang and Tan, Cheng and Wu, Lirong and Li, Stan Z},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={3170--3180},
year={2022}
}
@article{tan2022simvpv2,
title={SimVP: Towards Simple yet Powerful Spatiotemporal Predictive Learning},
author={Tan, Cheng and Gao, Zhangyang and Li, Siyuan and Li, Stan Z},
journal={arXiv preprint arXiv:2211.12509},
year={2022}
}
@inproceedings{tan2023temporal,
title={Temporal attention unit: Towards efficient spatiotemporal predictive learning},
author={Tan, Cheng and Gao, Zhangyang and Wu, Lirong and Xu, Yongjie and Xia, Jun and Li, Siyuan and Li, Stan Z},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={18770--18782},
year={2023}
}
```
## Contribution and Contact
For adding new features, looking for helps, or reporting bugs associated with `OpenSTL`, please open a [GitHub issue](https://github.com/chengtan9907/OpenSTL/issues) and [pull request](https://github.com/chengtan9907/OpenSTL/pulls) with the tag "new features", "help wanted", or "enhancement". Feel free to contact us through email if you have any questions.
- Siyuan Li (lisiyuan@westlake.edu.cn), Westlake University & Zhejiang University
- Cheng Tan (tancheng@westlake.edu.cn), Westlake University & Zhejiang University
- Zhangyang Gao (gaozhangyang@westlake.edu.cn), Westlake University & Zhejiang University