# yolov12
**Repository Path**: monkeycc/yolov12
## Basic Information
- **Project Name**: yolov12
- **Description**: https://github.com/sunsmarterjie/yolov12
- **Primary Language**: Python
- **License**: AGPL-3.0
- **Default Branch**: Cls
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-07-11
- **Last Updated**: 2025-07-11
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
YOLOv12
YOLOv12: Attention-Centric Real-Time Object Detectors
[Yunjie Tian](https://sunsmarterjie.github.io/)1, [Qixiang Ye](https://people.ucas.ac.cn/~qxye?language=en)2, [David Doermann](https://cse.buffalo.edu/~doermann/)1
1 University at Buffalo, SUNY, 2 University of Chinese Academy of Sciences.
## Main Results (ImageNet-1K)
[**Classification**](https://github.com/sunsmarterjie/yolov12/tree/Cls):
| Model (cls) | size
(pixels) | Acc.
top-1
| Acc.
top-5
| Speed (ms)
T4 TensorRT10
| params
(M) | FLOPs
(B) |
| :----------------------------------------------------------------------------------------| :-------------------: | :------------: | :------------: | :-------------------------------------:| :----------------: | :---------------: |
| [YOLOv12n-cls](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12n-cls.pt) | 224 | 71.7 | 90.5 | 1.27 | 2.9 | 0.5 |
| [YOLOv12s-cls](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12s-cls.pt) | 224 | 76.4 | 93.3 | 1.52 | 7.2 | 1.5 |
| [YOLOv12m-cls](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12m-cls.pt) | 224 | 78.8 | 94.4 | 2.03 | 12.7 | 4.5 |
| [YOLOv12l-cls](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12l-cls.pt) | 224 | 79.5 | 94.5 | 2.73 | 16.8 | 6.2 |
| [YOLOv12x-cls](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12x-cls.pt) | 224 | 80.1 | 95.3 | 3.64 | 35.5 | 13.7 |
## Installation
```
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
conda create -n yolov12 python=3.11
conda activate yolov12
pip install -r requirements.txt
pip install -e .
```
## Validation
[`yolov12n-cls`](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12n-cls.pt)
[`yolov12s-cls`](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12s-cls.pt)
[`yolov12m-cls`](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12m-cls.pt)
[`yolov12l-cls`](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12l-cls.pt)
[`yolov12x-cls`](https://github.com/sunsmarterjie/yolov12/releases/download/cls/yolov12x-cls.pt)
```python
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}-cls.pt')
model.val(data='imagenet', save_json=True)
```
## Training
```python
from ultralytics import YOLO
model = YOLO('yolov12n-cls.yaml')
# Train the model
results = model.train(
data='imagenet',
epochs=200,
batch=256,
imgsz=224,
lr0=0.2,
lrf=0.01,
nbs=256,
warmup_epochs=0,
warmup_bias_lr=0.1,
weight_decay=0.0001,
cos_lr=True,
hsv_s=0.4,
optimizer='SGD',
device="0",
)
# Evaluate model performance on the validation set
metrics = model.val()
# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()
```
## Prediction
```python
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}-cls.pt')
model.predict()
```
## Export
```python
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}-cls.pt')
model.export(format="engine", half=True) # or format="onnx"
```
## Demo
```
python app.py
# Please visit http://127.0.0.1:7860
```
## Acknowledgement
The code is based on [ultralytics](https://github.com/ultralytics/ultralytics). Thanks for their excellent work!
## Citation
```BibTeX
@article{tian2025yolov12,
title={YOLOv12: Attention-Centric Real-Time Object Detectors},
author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
journal={arXiv preprint arXiv:2502.12524},
year={2025}
}
```