# Learning-Pytorch-Geometric **Repository Path**: milo7hao/Learning-Pytorch-Geometric ## Basic Information - **Project Name**: Learning-Pytorch-Geometric - **Description**: This repository is mainly a collection of some simple examples of learning PyG, with detailed procedures, from data loading, to model building, to training, forecasting, and visualization. It can be run directly in Google Colab. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-10 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Learning-Pytorch-Geometric ## Introduction This repository is mainly a collection of some simple examples of learning PyG, with detailed procedures, from data loading, to model building, to training, forecasting, and visualization. And other demo about ML, such as PCA **It can be run directly in Google Colab.** ## Main Content - [x] [Visualization of graph data](Networkx_Draw_Graph/Networkx_Draw_Graph.ipynb) - [x] [Spectral clustering](Graph_Serctral_Clustering/Graph_Serctral_Clustering.ipynb) ![spectral_clustering_result](Graph_Serctral_Clustering/spectral_clustering_result.png) - [x] [Graph Convolution for Semi-supervised Clustering of Karate Datasets](GCN_Demo/GCN_Demo.ipynb) From [[Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907) (ICLR 2017)] ![result](GCN_Demo/result.gif) - [x] [SAGE_Conv](SAGE_Conv\SAGE_Conv.ipynb) - [x] [pytorch_geometric_Message_Passing_test](PyG_test\pytorch_geometric_Message_Passing_test.ipynb) - [ ] PointNet