# Pose
**Repository Path**: markgosling/pose
## Basic Information
- **Project Name**: Pose
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-07-24
- **Last Updated**: 2024-07-24
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# easy_ViTPose
easy_ViTPose
## Accurate 2d human and animal pose estimation
### Easy to use SOTA `ViTPose` [Y. Xu et al., 2022] models for fast inference.
We provide all the VitPose original models, converted for inference, with single dataset format output.
In addition to that we also provide a Coco-25 model, trained on the original coco dataset + feet https://cmu-perceptual-computing-lab.github.io/foot_keypoint_dataset/
Finetuning is not currently supported, you can check de43d54cad87404cf0ad4a7b5da6bacf4240248b and previous commits for a working state of `train.py`
> [!WARNING]
> Ultralytics `yolov8` has issue with wrong bounding boxes when using `mps`, upgrade to latest version! (Works correctly on 8.2.48)
## Results

https://github.com/JunkyByte/easy_ViTPose/assets/24314647/e9a82c17-6e99-4111-8cc8-5257910cb87e
https://github.com/JunkyByte/easy_ViTPose/assets/24314647/63af44b1-7245-4703-8906-3f034a43f9e3
(Credits dance: https://www.youtube.com/watch?v=p-rSdt0aFuw )
(Credits zebras: https://www.youtube.com/watch?v=y-vELRYS8Yk )
## Features
- Image / Video / Webcam support
- Video support using SORT algorithm to track bboxes between frames
- Torch / ONNX / Tensorrt inference
- Runs the original VitPose checkpoints from [ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose)
- 4 ViTPose architectures with different sizes and performances (s: small, b: base, l: large, h: huge)
- Multi skeleton and dataset: (AIC / MPII / COCO / COCO + FEET / COCO WHOLEBODY / APT36k / AP10k)
- Human / Animal pose estimation
- cpu / gpu / metal support
- show and save images / videos and output to json
We run YOLOv8 for detection, it does not provide complete animal detection. You can finetune a custom yolo model to detect the animal you are interested in,
if you do please open an issue, we might want to integrate other models for detection.
### Benchmark:
You can expect realtime >30 fps with modern nvidia gpus and apple silicon (using metal!).
### Skeleton reference
There are multiple skeletons for different dataset. Check the definition here [visualization.py](https://github.com/JunkyByte/easy_ViTPose/blob/main/easy_ViTPose/vit_utils/visualization.py).
## Installation and Usage
> [!IMPORTANT]
> Install `torch>2.0 with cuda / mps support` by yourself.
> also check `requirements_gpu.txt`.
```bash
git clone git@github.com:JunkyByte/easy_ViTPose.git
cd easy_ViTPose/
pip install -e .
pip install -r requirements.txt
```
### Download models
- Download the models from [Huggingface](https://huggingface.co/JunkyByte/easy_ViTPose)
We provide torch models for every dataset and architecture.
If you want to run onnx / tensorrt inference download the appropriate torch ckpt and use `export.py` to convert it.
You can use `ultralytics` `yolo export` command to export yolo to onnx and tensorrt as well.
#### Export to onnx and tensorrt
```bash
$ python export.py --help
usage: export.py [-h] --model-ckpt MODEL_CKPT --model-name {s,b,l,h} [--output OUTPUT] [--dataset DATASET]
optional arguments:
-h, --help show this help message and exit
--model-ckpt MODEL_CKPT
The torch model that shall be used for conversion
--model-name {s,b,l,h}
[s: ViT-S, b: ViT-B, l: ViT-L, h: ViT-H]
--output OUTPUT File (without extension) or dir path for checkpoint output
--dataset DATASET Name of the dataset. If None it"s extracted from the file name. ["coco", "coco_25",
"wholebody", "mpii", "ap10k", "apt36k", "aic"]
```
### Run inference
To run inference from command line you can use the `inference.py` script as follows:
```bash
$ python inference.py --help
usage: inference.py [-h] [--input INPUT] [--output-path OUTPUT_PATH] --model MODEL [--yolo YOLO] [--dataset DATASET]
[--det-class DET_CLASS] [--model-name {s,b,l,h}] [--yolo-size YOLO_SIZE]
[--conf-threshold CONF_THRESHOLD] [--rotate {0,90,180,270}] [--yolo-step YOLO_STEP]
[--single-pose] [--show] [--show-yolo] [--show-raw-yolo] [--save-img] [--save-json]
optional arguments:
-h, --help show this help message and exit
--input INPUT path to image / video or webcam ID (=cv2)
--output-path OUTPUT_PATH
output path, if the path provided is a directory output files are "input_name
+_result{extension}".
--model MODEL checkpoint path of the model
--yolo YOLO checkpoint path of the yolo model
--dataset DATASET Name of the dataset. If None it"s extracted from the file name. ["coco", "coco_25",
"wholebody", "mpii", "ap10k", "apt36k", "aic"]
--det-class DET_CLASS
["human", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"animals"]
--model-name {s,b,l,h}
[s: ViT-S, b: ViT-B, l: ViT-L, h: ViT-H]
--yolo-size YOLO_SIZE
YOLOv8 image size during inference
--conf-threshold CONF_THRESHOLD
Minimum confidence for keypoints to be drawn. [0, 1] range
--rotate {0,90,180,270}
Rotate the image of [90, 180, 270] degress counterclockwise
--yolo-step YOLO_STEP
The tracker can be used to predict the bboxes instead of yolo for performance, this flag
specifies how often yolo is applied (e.g. 1 applies yolo every frame). This does not have any
effect when is_video is False
--single-pose Do not use SORT tracker because single pose is expected in the video
--show preview result during inference
--show-yolo draw yolo results
--show-raw-yolo draw yolo result before that SORT is applied for tracking (only valid during video inference)
--save-img save image results
--save-json save json results
```
You can run inference from code as follows:
```python
import cv2
from easy_ViTPose import VitInference
# Image to run inference RGB format
img = cv2.imread('./examples/img1.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# set is_video=True to enable tracking in video inference
# be sure to use VitInference.reset() function to reset the tracker after each video
# There are a few flags that allows to customize VitInference, be sure to check the class definition
model_path = './ckpts/vitpose-s-coco_25.pth'
yolo_path = './yolov8s.pth'
# If you want to use MPS (on new macbooks) use the torch checkpoints for both ViTPose and Yolo
# If device is None will try to use cuda -> mps -> cpu (otherwise specify 'cpu', 'mps' or 'cuda')
# dataset and det_class parameters can be inferred from the ckpt name, but you can specify them.
model = VitInference(model_path, yolo_path, model_name='s', yolo_size=320, is_video=False, device=None)
# Infer keypoints, output is a dict where keys are person ids and values are keypoints (np.ndarray (25, 3): (y, x, score))
# If is_video=True the IDs will be consistent among the ordered video frames.
keypoints = model.inference(img)
# call model.reset() after each video
img = model.draw(show_yolo=True) # Returns RGB image with drawings
cv2.imshow('image', cv2.cvtColor(img, cv2.COLOR_RGB2BGR)); cv2.waitKey(0)
```
> [!NOTE]
> If the input file is a video [SORT](https://github.com/abewley/sort) is used to track people IDs and output consistent identifications.
### OUTPUT json format
The output format of the json files:
```
{
"keypoints":
[ # The list of frames, len(json['keypoints']) == len(video)
{ # For each frame a dict
"0": [ # keys are id to track people and value the keypoints
[121.19, 458.15, 0.99], # Each keypoint is (y, x, score)
[110.02, 469.43, 0.98],
[110.86, 445.04, 0.99],
],
"1": [
...
],
},
{
"0": [
[122.19, 458.15, 0.91],
[105.02, 469.43, 0.95],
[122.86, 445.04, 0.99],
],
"1": [
...
]
}
],
"skeleton":
{ # Skeleton reference, key the idx, value the name
"0": "nose",
"1": "left_eye",
"2": "right_eye",
"3": "left_ear",
"4": "right_ear",
"5": "neck",
...
}
}
```
## Finetuning
Finetuning is possible but not officially supported right now. If you would like to finetune and need help open an issue.
You can check `train.py`, `datasets/COCO.py` and `config.yaml` for details.
---
## Evaluation on COCO dataset
1. Download COCO dataset images and labels
- 2017 Val images [5K/1GB]: http://images.cocodataset.org/zips/val2017.zip
The extracted directory looks like this:
```
val2017/
├── 000000000139.jpg
├── 000000000285.jpg
├── 000000000632.jpg
└── ...
```
- 2017 Train/Val annotations [241MB]: http://images.cocodataset.org/annotations/annotations_trainval2017.zip
The extracted directory looks like this:
```
annotations/
├── person_keypoints_val2017.json
├── person_keypoints_train2017.json
└── ...
```
2. Run the following command:
```bash
$ python evaluation_on_coco.py
Command line arguments:
--model_path: Path to the pretrained ViT Pose model
--yolo_path: Path to the YOLOv8 model
--img_folder_path: Path to the directory containing COCO val images (/val2017 extracted in step 1).
--annFile: Path to json file for COCO keypoints for val set (annotations/person_keypoints_val2017.json extracted in step 1)
```
---
## TODO:
- refactor finetuning (currently not available)
- benchmark and check bottlenecks of inference pipeline
- parallel batched inference
- other minor fixes
- yolo version for animal pose, check https://github.com/JunkyByte/easy_ViTPose/pull/18
- solve cuda exceptions on script exit when using tensorrt (no idea how)
- add infos about inferred informations during inference, better output of inference status (device etc)
- check if is possible to make colab work without runtime restart
Feel free to open issues, pull requests and contribute on these TODOs.
## Reference
Thanks to the VitPose authors and their official implementation [ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).
The SORT code is taken from [abewley/sort](https://github.com/abewley/sort)