# DeepST **Repository Path**: liweiowl/DeepST ## Basic Information - **Project Name**: DeepST - **Description**: Deep Learning for Spatio-Temporal Data - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-03-23 - **Last Updated**: 2022-12-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README DeepST ====== [DeepST](https://github.com/lucktroy/DeepST): A **Deep Learning** Toolbox for Spatio-Temporal Data *Tested on `Windows Server 2012 R2`.* ## Installation DeepST uses the following dependencies: * [Keras](https://keras.io/#installation) and its dependencies are required to use DeepST. * [Theano](http://deeplearning.net/software/theano/install.html#install) or [TensorFlow](https://github.com/tensorflow/tensorflow#download-and-setup), but **Theano** is recommended. * numpy and scipy * HDF5 and [h5py](http://www.h5py.org/) * [pandas](http://pandas.pydata.org/) * CUDA 7.5 or latest version. And **cuDNN** is highly recommended. To install DeepST, `cd` to the **DeepST** folder and run the install command: ``` python setup.py install ``` To install the development version: ``` python setup.py develop ``` ## Data path The default `DATAPATH` variable is `DATAPATH=[path_to_DeepST]/data`. You may set your `DATAPATH` variable using ``` # Windows set DATAPATH=[path_to_your_data] # Linux export DATAPATH=[path_to_your_data] ``` ## License DeepST is released under the MIT License (refer to the LICENSE file for details).