# scan_tools **Repository Path**: li9616/scan_tools ## Basic Information - **Project Name**: scan_tools - **Description**: ROS Laser scan tools - **Primary Language**: C++ - **License**: Not specified - **Default Branch**: fuerte - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-24 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Laser scan tools for ROS =================================== Overview ----------------------------------- Laser scan processing tools. The stack contains: * `csm`: a meta-package that downloads and installs Andrea Censi's Canonical Scan Matcher [1] locally * `laser_ortho_projector`: calculates orthogonal projections of LaserScan messages * `laser_scan_matcher`: an incremental laser scan matcher, using Andrea Censi's Canonical Scan Matcher implementation * `laser_scan_sparsifier`: takes in a LaserScan message and sparsifies it * `laser_scan_splitter`: takes in a LaserScan message and splits it into a number of other LaserScan messages * `ncd_parser`: reads in .alog data files from the New College Dataset [2] and broadcasts scan and odometry messages to ROS. * `scan_to_cloud_converter`: converts LaserScan to PointCloud messages. Installing ----------------------------------- ### From source ### Create a directory where you want the package downloaded (ex. `~/ros`), and add it to `$ROS_PACKAGE_PATH`. Make sure you have git installed: sudo apt-get install git-core Download the stack from our repository: git clone https://github.com/ccny-ros-pkg/scan_tools.git Install any dependencies using [[rosdep]]. rosdep install scan_tools Compile the stack: rosmake scan_tools More info ----------------------------------- http://ros.org/wiki/scan_tools References ----------------------------------- [1] A. Censi, "An ICP variant using a point-to-line metric" Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2008 [2] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, The new college vision and laser data set, International Journal for Robotics Research (IJRR), vol. 28, no. 5, pp. 595599, May 2009.