# ui2code-opencv
**Repository Path**: laver9/ui2code-opencv
## Basic Information
- **Project Name**: ui2code-opencv
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2019-02-28
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
ui2code-opencv
## Steps To Detect Component
Install following packages
- tensorflow
- imutils
- numpy
- opencv-python
- matplotlib
- pandas
- pillow
2. Set Environment Variables
```IMAGE_SIZE=224```
```ARCHITECTURE="mobilenet_0.50_${IMAGE_SIZE}"```
3. To Train
``python -m scripts.retrain \
--bottleneck_dir=tf_files/bottlenecks \
--how_many_training_steps=500 \
--model_dir=tf_files/models/ \
--summaries_dir=tf_files/training_summaries/"${ARCHITECTURE}" \
--output_graph=tf_files/retrained_graph.pb \
--output_labels=tf_files/retrained_labels.txt \
--architecture="${ARCHITECTURE}" \
--image_dir=images/
``
4. To Predict Component
``` python detect_component.py --image=predict/web.png ```
### To Render on Webpage
1. cd to `myapp`
2. `npm install`
3. `npm start`