# ui2code-opencv **Repository Path**: laver9/ui2code-opencv ## Basic Information - **Project Name**: ui2code-opencv - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2019-02-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ui2code-opencv ## Steps To Detect Component Install following packages - tensorflow - imutils - numpy - opencv-python - matplotlib - pandas - pillow 2. Set Environment Variables
```IMAGE_SIZE=224```
```ARCHITECTURE="mobilenet_0.50_${IMAGE_SIZE}"``` 3. To Train
``python -m scripts.retrain \ --bottleneck_dir=tf_files/bottlenecks \ --how_many_training_steps=500 \ --model_dir=tf_files/models/ \ --summaries_dir=tf_files/training_summaries/"${ARCHITECTURE}" \ --output_graph=tf_files/retrained_graph.pb \ --output_labels=tf_files/retrained_labels.txt \ --architecture="${ARCHITECTURE}" \ --image_dir=images/ `` 4. To Predict Component ``` python detect_component.py --image=predict/web.png ``` ### To Render on Webpage 1. cd to `myapp` 2. `npm install` 3. `npm start`