# mne-features **Repository Path**: lanicon/mne-features ## Basic Information - **Project Name**: mne-features - **Description**: MNE-Features software for extracting features from multivariate time series - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README MNE-Features ========================================= |Travis|_ |Codecov|_ .. |Travis| image:: https://api.travis-ci.org/mne-tools/mne-features.svg?branch=master .. _Travis: https://travis-ci.org/mne-tools/mne-features .. |Codecov| image:: http://codecov.io/github/mne-tools/mne-features/coverage.svg?branch=master .. _Codecov: http://codecov.io/github/mne-tools/mne-features?branch=master This repository provides code for feature extraction with M/EEG data. The documentation of the MNE-Features module is available at: `documentation `_. Installation ------------ To install the package, the simplest way is to use pip to get the latest release:: $ pip install mne-features or to get the latest version of the code:: $ pip install git+https://github.com/mne-tools/mne-features.git#egg=mne_features Dependencies ------------ These are the dependencies to use MNE-Features: * numpy (>=1.8) * matplotlib (>=1.3) * scipy (>=0.19) * numba (>=0.37) * scikit-learn (>=0.19) * mne (>=0.14) * PyWavelets (>=0.5.2) * pandas (>=0.20) Cite ---- If you use this code in your project, please cite:: Jean-Baptiste SCHIRATTI, Jean-Eudes LE DOUGET, Michel LE VAN QUYEN, Slim ESSID, Alexandre GRAMFORT, "An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings" Proc. IEEE ICASSP Conf. 2018