# aamlibrary **Repository Path**: kate233/aamlibrary ## Basic Information - **Project Name**: aamlibrary - **Description**: Active Appearance Model C++ Library - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Active Appearance Model C++ Library (AAMLibrary) ## Dependencies - opencv 1.0 or later - cmake 2.6 or later ## How to build your program > mkdir build > cd build > cmake .. > make ## Quick Tutorial ### Prepare: - For model training, you should have several pairs of images and annotations. AAMLibrary supports pts and asf format. - Download the imm dataset from AAM-API's homepage [link: IMM Dataset](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=922) - Download FRANCK dataset annotated by Cootes [link: Cootes's Dataset](http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/tfc_software.html) - Download helen dataset from this [link: Helen Dataset](http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/) - You can generate your pts file by using Cootes's am_tools and asf file by using Stagmman's aam-api. ### Training - Train the Cootes's basic active appearance models using 3 parymid levels > ./build -t 0 -p 3 ../helen jpg pts haarcascade_frontalface_alt2.xml basic.amf - Train the Matthews and S. Baker's Inverse Compositional models using 2 parymid levels > ./build -t 1 -p 2 ../helen jpg pts haarcascade_frontalface_alt2.xml ic.amf ### Fitting - Image alignment on an image > ./fit my.amf haarcascade_frontalface_alt2.xml test.jpg - Face tracking on a video file > ./fit my.amf haarcascade_frontalface_alt2.xml test.avi ## Question if you have any question, contact me at njustyw@gmail.com, THANKS.