# DCFNet **Repository Path**: jlxing/DCFNet ## Basic Information - **Project Name**: DCFNet - **Description**: DCFNet: Discriminant Correlation Filters Network for Visual Tracking - **Primary Language**: Matlab - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-05-23 - **Last Updated**: 2021-12-13 ## Categories & Tags **Categories**: mathlibs **Tags**: None ## README ### DCFNET: DISCRIMINANT CORRELATION FILTERS NETWORK FOR VISUAL TRACKING([arXiv](https://arxiv.org/pdf/1704.04057.pdf)) By Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, Weiming Hu ### Introduction ![DCFNet](result/DCFNet.png) > Discriminant Correlation Filters (DCF) based methods now become a kind of dominant approach to online object tracking. The features used in these methods, however, are either based on hand-crafted features like HoGs, or convolutional features trained independently from other tasks like image classification. In this work, we present an *end-to-end lightweight* network architecture, namely **DCFNet**, to learn the convolutional features and perform the correlation tracking process simultaneously. ## Contents 1. [Requirements](#requirements) 2. [Tracking](#tracking) 3. [Training](#training) 4. [Results](#results) 5. [Citation](#citing-dcfnet) ## Requirements ``` git clone --depth=1 https://github.com/foolwood/DCFNet.git ``` Requirements for MatConvNet 1.0-beta24 \(see: [MatConvNet](http://www.vlfeat.org/matconvnet/install/)\) 1. Downloading MatConvNet ``` cd git clone https://github.com/vlfeat/matconvnet.git ``` 2. Compiling MatConvNet Run the following command from the MATLAB command window: ``` cd matconvnet run matlab/vl_compilenn ``` [**Optional**] If you want to reproduce the speed in our paper, please follow the [website](http://www.vlfeat.org/matconvnet/install/) to compile the **GPU** version. ## Tracking The file `demo/demoDCFNet.m` is used to test our algorithm. To reproduce the performance on [**OTB**](http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html) , you can simple copy `DCFNet/` into OTB toolkit. [**Note**] Configure MatConvNet path in `tracking_env.m` ## Training 1.Download the training data. ([**VID**](data)) 2.Data Preprocessing in MATLAB. ```matlab cd training/dataPreprocessing data_preprocessing(); analyze_data(); ``` 3.Train a DCFNet model. ``` train_DCFNet(); ``` ## Results **DCFNet** obtains a significant improvements by - Good Training dataset. (TC128+UAV123+NUS_PRO -> VID) - Good learning policy. (constant 1e-5 -> logspace(-2,-5,50)) - Large padding size. (1.5 -> 2.0) The OPE/TRE/SRE results on OTB [BaiduYun](http://pan.baidu.com/s/1boKcXkF) or [GoogleDrive](https://drive.google.com/open?id=0BwWEXCnRCqJ-SHNaYUJwaW81R1E). ![result on OTB](result/OTB.png) ## Citing DCFNet If you find [**DCFNet**](https://arxiv.org/pdf/1704.04057.pdf) useful in your research, please consider citing: ``` @article{wang17dcfnet, Author = {Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, Weiming Hu}, Title = {DCFNet: Discriminant Correlation Filters Network for Visual Tracking}, Journal = {arXiv preprint arXiv:1704.04057}, Year = {2017} } ```