# OCGAN-Pytorch **Repository Path**: fidder/OCGAN-Pytorch ## Basic Information - **Project Name**: OCGAN-Pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-28 - **Last Updated**: 2020-12-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # OCGAN-Pytorch OCGAN - UnOfficial PyTorch Implementation This is the unofficial PyTorch implementation of OCGAN. The code accompanies the paper "[OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations](http://openaccess.thecvf.com/content_CVPR_2019/papers/Perera_OCGAN_One-Class_Novelty_Detection_Using_GANs_With_Constrained_Latent_Representations_CVPR_2019_paper.pdf)". The author's implementation of *OCGAN* in MXNet is at [here](https://github.com/PramuPerera/OCGAN). ## Features * Unified interface for different network architectures * Multi-GPU support * Training progress bar with rich info * Training log and training curve visualization code (see `./utils/logger.py`) ## Installation This code is written in `Python 3.7` and tested with `Pytorch 1.2.0`. * Install [PyTorch](http://pytorch.org/) * Clone recursively ``` git clone --recursive https://github.com/xiehousen/OCGAN-Pytorch.git ``` ## Training ``` python train.py ``` During training, every five epochs will store the training input and output pictures in the result folder.