# ProgressiveColorTransfer_Pytorch **Repository Path**: fengfeng043/ProgressiveColorTransfer_Pytorch ## Basic Information - **Project Name**: ProgressiveColorTransfer_Pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-08 - **Last Updated**: 2025-01-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ProgressiveColorTransfer_Pytorch CSCI5210 Project | Pytorch Re-Implementation: Progressive Color Transfer with Dense Semantic Correspondences (SIGGRAPH 2019) It is just a non-official course project implementation, offcial C++ implementation is [here](https://github.com/hmmlillian/Neural-Color-Transfer). ```bash export PYTHONPATH=/path/to/the/project/ProgressiveColorTransfer_Pytorch:$PYTHONPATH cd ProgressiveColorTransfer_Pytorch bash exps/00-baseline/inference.sh ``` ## Results ![](demo/vis.png) ## Notes The patchmatch is superslow since it was a GPU version. You can get intermediate results by reduce the number of feature extraction layers in the configuration file. Some details may different with the original paper, so I just find out a workable setting through experiments. I did not implement the non-local loss term. Thanks for the code of [Deep Image Analogy PyTorch](https://github.com/harveyslash/Deep-Image-Analogy-PyTorch) and [Neural Color Transfer PyTorch Implementation](https://github.com/rassilon712/Neural_Color_Transfer).