# PythonStudyNote **Repository Path**: debuggerCaofanCPU/PythonStudyNote ## Basic Information - **Project Name**: PythonStudyNote - **Description**: Use Python to touch BigData, MachineLearning and ArtificialIntelligence - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [PythonStudyNote](https://github.com/caofanCPU/PythonStudyNote) Use Python to touch BigData, MachineLearning and ArtificialIntelligence. ## Version 1.2 **`DateTime`** {     import time     print(time.strftime('%Y-%m-%d %H:%M:%S',        time.localtime(time.time()))) } *** ## Components - **PythonBase** - **MachineLearning** - **KiggleContest** *** ### PythonBase * list * array * dataframe * modules&packages(os, numpy, pandas, sklearn etc.) ### MachineLearning * [Prediction of Benign/malignant tumor](https://github.com/caofanCPU/PythonStudyNote/blob/master/MachineLearning&KaggleContest/ML1全套/乳腺癌肿瘤预测_简单版_完整代码.py)(良性/恶性肿瘤预测) * [Handwritten numeral recognition of postal system](https://github.com/caofanCPU/PythonStudyNote/tree/master/MachineLearning&KaggleContest/ML2全套/手写体原始数字图片经PCA算法处理后的二维空间分布.py)(邮政系统手写体数字识别) * [Survival possibility analysis for passengers of the Titanic](https://github.com/caofanCPU/PythonStudyNote/tree/master/MachineLearning&KaggleContest/ML2全套/坦坦尼克号沉船事故乘客生还可能性预测.py)(泰坦尼克号沉船事故乘客生还可能性分析) * [Housing price of Boston](https://github.com/caofanCPU/PythonStudyNote/tree/master/MachineLearning&KaggleContest/ML3模型优化/skflow工具包_回归预测波斯顿房价.py)(波士顿房价预测) *** ## Highlights ![AfterPCA](http://i1.piimg.com/588926/a28673e13fc6f3dd.png) ![Optdigits](http://i1.piimg.com/588926/1535a55c29dce308.png) ![Cluster1](http://i1.piimg.com/588926/1ade74e673603440.png) ![Cluster2](http://i1.piimg.com/588926/1ade74e673603440.png) ![FeatureSelection](http://i2.muimg.com/588926/d05743693bed3b15.png) *** ## Remarks     For quickly starting Python, I recommend you to learn [**`python多叉树`**](https://github.com/caofanCPU/PythonStudyNote/tree/master/PythonQuickStart/python多叉树.py) and [**`python缓存模拟`**](https://github.com/caofanCPU/PythonStudyNote/tree/master/PythonQuickStart/python缓存模拟.py). However, it will be difficult to read the code before you know the background story. Reading *Remarks.txt* carefully until you can write some pseudo-code for solving problems.