# MVCNN-PyTorch **Repository Path**: cvlab/MVCNN-PyTorch ## Basic Information - **Project Name**: MVCNN-PyTorch - **Description**: Multi-View CNN built on ResNet/AlexNet to classify 3D objects - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-27 - **Last Updated**: 2025-10-27 ## Categories & Tags **Categories**: machine-learning **Tags**: None ## README # MVCNN-PyTorch ## Multi-View CNN built on ResNet/AlexNet to classify 3D objects A PyTorch implementation of MVCNN using ResNet, inspired by the paper by [Hang Su](http://vis-www.cs.umass.edu/mvcnn/docs/su15mvcnn.pdf). MVCNN uses multiple 2D images of 3D objects to classify them. You can use the provided dataset or create your own. Also check out my [RotationNet](https://github.com/RBirkeland/RotationNet) implementation whitch outperforms MVCNN (Under construction). ![MVCNN](https://preview.ibb.co/eKcJHy/687474703a2f2f7669732d7777772e63732e756d6173732e6564752f6d76636e6e2f696d616765732f6d76636e6e2e706e67.png) ### Dependencies * torch * torchvision * numpy * tensorflow (for logging) ### Dataset ModelNet40 12-view PNG dataset can be downloaded from [Google Drive](https://drive.google.com/file/d/0B4v2jR3WsindMUE3N2xiLVpyLW8/view). You can also create your own 2D dataset from 3D objects (.obj, .stl, and .off), using [BlenderPhong](https://github.com/WeiTang114/BlenderPhong) ### Setup ```bash mkdir checkpoint mkdir logs ``` ### Train To start training, simply point to the path of the downloaded dataset. All the other settings are optional. ``` python controller.py [--depth N] [--model MODEL] [--epochs N] [-b N] [--lr LR] [--momentum M] [--lr-decay-freq W] [--lr-decay W] [--print-freq N] [-r PATH] [--pretrained] ``` To resume from a checkpoint, use the -r tag together with the path to the checkpoint file. ### Tensorboard To view training logs ``` tensorboard --logdir='logs' --port=6006 ```