# PageIndex **Repository Path**: cloudaaps/PageIndex ## Basic Information - **Project Name**: PageIndex - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-22 - **Last Updated**: 2025-12-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
PageIndex Banner

VectifyAI%2FPageIndex | Trendshift

Reasoning-based RAG  β—¦  No Vector DB  β—¦  No Chunking  β—¦  Human-like Retrieval

🏠 Homepage  β€’   πŸ–₯️ Chat Platform  β€’   πŸ”Œ MCP  β€’   πŸ“š Docs  β€’   πŸ’¬ Discord  β€’   βœ‰οΈ Contact 

πŸ“’ Latest Updates

**πŸ”₯ Releases:** - [**PageIndex Chat**](https://chat.pageindex.ai): The first human-like document-analysis agent [platform](https://chat.pageindex.ai) built for professional long documents. Can also be integrated via [MCP](https://pageindex.ai/mcp) or [API](https://docs.pageindex.ai/quickstart) (beta). **πŸ“ Articles:** - [**PageIndex Framework**](https://pageindex.ai/blog/pageindex-intro): Introduces the PageIndex framework β€” an *agentic, in-context* *tree index* that enables LLMs to perform *reasoning-based*, *human-like retrieval* over long documents, without vector DB or chunking. **πŸ§ͺ Cookbooks:** - [Vectorless RAG](https://docs.pageindex.ai/cookbook/vectorless-rag-pageindex): A minimal, hands-on example of reasoning-based RAG using PageIndex. No vectors, no chunking, and human-like retrieval. - [Vision-based Vectorless RAG](https://docs.pageindex.ai/cookbook/vision-rag-pageindex): OCR-free, vision-only RAG with PageIndex's reasoning-native retrieval workflow that works directly over PDF page images.
--- # πŸ“‘ Introduction to PageIndex Are you frustrated with vector database retrieval accuracy for long professional documents? Traditional vector-based RAG relies on semantic *similarity* rather than true *relevance*. But **similarity β‰  relevance** β€” what we truly need in retrieval is **relevance**, and that requires **reasoning**. When working with professional documents that demand domain expertise and multi-step reasoning, similarity search often falls short. Inspired by AlphaGo, we propose **[PageIndex](https://vectify.ai/pageindex)** β€” a **vectorless**, **reasoning-based RAG** system that builds a **hierarchical tree index** from long documents and uses LLMs to **reason** *over that index* for **agentic, context-aware retrieval**. It simulates how *human experts* navigate and extract knowledge from complex documents through *tree search*, enabling LLMs to *think* and *reason* their way to the most relevant document sections. PageIndex performs retrieval in two steps: 1. Generate a β€œTable-of-Contents” **tree structure index** of documents 2. Perform reasoning-based retrieval through **tree search**
### 🎯 Features Compared to traditional vector-based RAG, **PageIndex** features: - **No Vector DB**: Uses document structure and LLM reasoning for retrieval, instead of vector similarity search. - **No Chunking**: Documents are organized into natural sections, not artificial chunks. - **Human-like Retrieval**: Simulates how human experts navigate and extract knowledge from complex documents. - **Better Explainability and Traceability**: Retrieval is based on reasoning β€” traceable and interpretable, with page and section references. No more opaque, approximate vector search (β€œvibe retrieval”). PageIndex powers a reasoning-based RAG system that achieved **state-of-the-art** [98.7% accuracy](https://github.com/VectifyAI/Mafin2.5-FinanceBench) on FinanceBench, demonstrating superior performance over vector-based RAG solutions in professional document analysis (see our [blog post](https://vectify.ai/blog/Mafin2.5) for details). ### πŸ“ Explore PageIndex To learn more, please see a detailed introduction of the [PageIndex framework](https://pageindex.ai/blog/pageindex-intro). Check out this GitHub repo for open-source code, and the [cookbooks](https://docs.pageindex.ai/cookbook), [tutorials](https://docs.pageindex.ai/tutorials), and [blog](https://pageindex.ai/blog) for additional usage guides and examples. The PageIndex service is available as a ChatGPT-style [chat platform](https://chat.pageindex.ai), or can be integrated via [MCP](https://pageindex.ai/mcp) or [API](https://docs.pageindex.ai/quickstart). ### πŸ› οΈ Deployment Options - Self-host β€” run locally with this open-source repo. - Cloud Service β€” try instantly with our [Chat Platform](https://chat.pageindex.ai/), or integrate with [MCP](https://pageindex.ai/mcp) or [API](https://docs.pageindex.ai/quickstart). - _Enterprise_ β€” private or on-prem deployment. [Contact us](https://ii2abc2jejf.typeform.com/to/tK3AXl8T) or [book a demo](https://calendly.com/pageindex/meet) for more details. ### πŸ§ͺ Quick Hands-on - Try the [**Vectorless RAG**](https://github.com/VectifyAI/PageIndex/blob/main/cookbook/pageindex_RAG_simple.ipynb) notebook β€” a *minimal*, hands-on example of reasoning-based RAG using PageIndex. - Experiment with [*Vision-based Vectorless RAG*](https://github.com/VectifyAI/PageIndex/blob/main/cookbook/vision_RAG_pageindex.ipynb) β€” no OCR; a minimal, reasoning-native RAG pipeline that works directly over page images.
Open in Colab: Vectorless RAG    Open in Colab: Vision RAG
--- # 🌲 PageIndex Tree Structure PageIndex can transform lengthy PDF documents into a semantic **tree structure**, similar to a _"table of contents"_ but optimized for use with Large Language Models (LLMs). It's ideal for: financial reports, regulatory filings, academic textbooks, legal or technical manuals, and any document that exceeds LLM context limits. Below is an example PageIndex tree structure. Also see more example [documents](https://github.com/VectifyAI/PageIndex/tree/main/tests/pdfs) and generated [tree structures](https://github.com/VectifyAI/PageIndex/tree/main/tests/results). ```jsonc ... { "title": "Financial Stability", "node_id": "0006", "start_index": 21, "end_index": 22, "summary": "The Federal Reserve ...", "nodes": [ { "title": "Monitoring Financial Vulnerabilities", "node_id": "0007", "start_index": 22, "end_index": 28, "summary": "The Federal Reserve's monitoring ..." }, { "title": "Domestic and International Cooperation and Coordination", "node_id": "0008", "start_index": 28, "end_index": 31, "summary": "In 2023, the Federal Reserve collaborated ..." } ] } ... ``` You can generate the PageIndex tree structure with this open-source repo, or use our [API](https://docs.pageindex.ai/quickstart) --- # βš™οΈ Package Usage You can follow these steps to generate a PageIndex tree from a PDF document. ### 1. Install dependencies ```bash pip3 install --upgrade -r requirements.txt ``` ### 2. Set your OpenAI API key Create a `.env` file in the root directory and add your API key: ```bash CHATGPT_API_KEY=your_openai_key_here ``` ### 3. Run PageIndex on your PDF ```bash python3 run_pageindex.py --pdf_path /path/to/your/document.pdf ```
Optional parameters
You can customize the processing with additional optional arguments: ``` --model OpenAI model to use (default: gpt-4o-2024-11-20) --toc-check-pages Pages to check for table of contents (default: 20) --max-pages-per-node Max pages per node (default: 10) --max-tokens-per-node Max tokens per node (default: 20000) --if-add-node-id Add node ID (yes/no, default: yes) --if-add-node-summary Add node summary (yes/no, default: yes) --if-add-doc-description Add doc description (yes/no, default: yes) ```
Markdown support
We also provide markdown support for PageIndex. You can use the `-md_path` flag to generate a tree structure for a markdown file. ```bash python3 run_pageindex.py --md_path /path/to/your/document.md ``` > Note: in this function, we use "#" to determine node heading and their levels. For example, "##" is level 2, "###" is level 3, etc. Make sure your markdown file is formatted correctly. If your Markdown file was converted from a PDF or HTML, we don't recommend using this function, since most existing conversion tools cannot preserve the original hierarchy. Instead, use our [PageIndex OCR](https://pageindex.ai/blog/ocr), which is designed to preserve the original hierarchy, to convert the PDF to a markdown file and then use this function.
--- # πŸ“ˆ Case Study: PageIndex Leads Finance QA Benchmark [Mafin 2.5](https://vectify.ai/mafin) is a reasoning-based RAG system for financial document analysis, powered by **PageIndex**. It achieved a state-of-the-art [**98.7% accuracy**](https://vectify.ai/blog/Mafin2.5) on the [FinanceBench](https://arxiv.org/abs/2311.11944) benchmark, significantly outperforming traditional vector-based RAG systems. PageIndex's hierarchical indexing and reasoning-driven retrieval enable precise navigation and extraction of relevant context from complex financial reports, such as SEC filings and earnings disclosures. Explore the full [benchmark results](https://github.com/VectifyAI/Mafin2.5-FinanceBench) and our [blog post](https://vectify.ai/blog/Mafin2.5) for detailed comparisons and performance metrics.
--- # 🧭 Resources * πŸ§ͺ [Cookbooks](https://docs.pageindex.ai/cookbook/vectorless-rag-pageindex): hands-on, runnable examples and advanced use cases. * πŸ“– [Tutorials](https://docs.pageindex.ai/doc-search): practical guides and strategies, including *Document Search* and *Tree Search*. * πŸ“ [Blog](https://pageindex.ai/blog): technical articles, research insights, and product updates. * πŸ”Œ [MCP setup](https://pageindex.ai/mcp#quick-setup) & [API docs](https://docs.pageindex.ai/quickstart): integration details and configuration options. --- # ⭐ Support Us Leave us a star 🌟 if you like our project. Thank you!

### Connect with Us [![Twitter](https://img.shields.io/badge/Twitter-000000?style=for-the-badge&logo=x&logoColor=white)](https://x.com/VectifyAI)  [![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/company/vectify-ai/)  [![Discord](https://img.shields.io/badge/Discord-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.com/invite/VuXuf29EUj)  [![Contact Us](https://img.shields.io/badge/Contact_Us-3B82F6?style=for-the-badge&logo=envelope&logoColor=white)](https://ii2abc2jejf.typeform.com/to/tK3AXl8T) --- Β© 2025 [Vectify AI](https://vectify.ai)