# models **Repository Path**: TaylorAI/models ## Basic Information - **Project Name**: models - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2018-01-13 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 本地运行方法: 前提环境:python3.5 Tensorflow1.4 1.登录自己的github fork models项目,然后用pycharmcheckout到本地 2.下载数据集quiz-w8-doc,并将inference.py、run.py、run.sh、ssd_mobilenet_v1_pets.config添加到models/research目录下 3.参照https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md安装Object Detection API所需要的libs 并在research目录下执行脚本:protoc object_detection/protos/*.proto --python_out=. 编译Protobuf,用脚本:python object_detection/builders/model_builder_test.py 验证是否编译成功 4.修改create_pet_tf_record.py,并在research目录下执行环境变量配置脚本:export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim 5.到https://gitee.com/ai100/quiz-w8-data.git下载实验数据 6.执行生成tfrecord脚本:python object_detection/dataset_tools/create_pet_tf_record.py --label_map_path=/home/taylor/Documents/homework/week08/quiz-w8-data/labels_items.txt --data_dir=/home/taylor/Documents/homework/week08/quiz-w8-data --output_dir=/home/taylor/Documents/homework/week08/quiz-w8-data/out 7.修改ssd_mobilenet_v1_pets.config、run.sh中目录及其他配置 8.执行 python run.py tinymind运行方法: 1.新建数据集my-objectdetection,并将model.ckpt.data-00000-of-00001、model.ckpt.index、model.ckpt.meta、labels_items.txt、pet_val.record 、pet_train.record test.jpg、ssd_mobilenet_v1_pets.config上传 2.修改run.sh、ssd_mobilenet_v1_pets.config中的目录配置:output_dir dataset_dir和label_map_path input_path fine_tune_checkpoint 3.新建模型 4.运行 tinymind模型地址:https://www.tinymind.com/luoweile/myobjectdetection