# Agents-Flex **Repository Path**: NeverBack2015/agents-flex ## Basic Information - **Project Name**: Agents-Flex - **Description**: Agents-Flex: 一个基于 Java 的 LLM(大语言模型)应用开发框架。 - **Primary Language**: Java - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://github.com/agents-flex/agents-flex - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 618 - **Created**: 2024-04-18 - **Last Updated**: 2024-04-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

English | 简体中文

# Agents-Flex is a LLM Application Framework like LangChain base on Java. --- ## Features - LLM Visit - Prompt、Prompt Template Loader - Function Calling Definer, Invoker、Running - Memory - Embedding - Vector Storage - Resource Loaders - Document - Splitter - Loader - Parser - PoiParser - PdfBoxParser - LLMs Chain - Agents Chain ## Simple Chat use OpenAi LLM: ```java @Test public void testChat() { OpenAiLlmConfig config = new OpenAiLlmConfig(); config.setApiKey("sk-rts5NF6n*******"); Llm llm = new OpenAiLlm(config); String response = llm.chat("what is your name?"); System.out.println(response); } ``` use Qwen LLM: ```java @Test public void testChat() { QwenLlmConfig config = new QwenLlmConfig(); config.setApiKey("sk-28a6be3236****"); config.setModel("qwen-turbo"); Llm llm = new QwenLlm(config); String response = llm.chat("what is your name?"); System.out.println(response); } ``` use SparkAi LLM: ```java @Test public void testChat() { SparkLlmConfig config = new SparkLlmConfig(); config.setAppId("****"); config.setApiKey("****"); config.setApiSecret("****"); Llm llm = new SparkLlm(config); String response = llm.chat("what is your name?"); System.out.println(response); } ``` ## Chat With Histories ```java public static void main(String[] args) { SparkLlmConfig config = new SparkLlmConfig(); config.setAppId("****"); config.setApiKey("****"); config.setApiSecret("****"); Llm llm = new SparkLlm(config); HistoriesPrompt prompt = new HistoriesPrompt(); System.out.println("ask for something..."); Scanner scanner = new Scanner(System.in); String userInput = scanner.nextLine(); while (userInput != null) { prompt.addMessage(new HumanMessage(userInput)); llm.chatAsync(prompt, (context, response) -> { System.out.println(">>>> " + response.getMessage().getContent()); }); userInput = scanner.nextLine(); } } ``` ## Function Calling - step 1: define the function native ```java public class WeatherUtil { @FunctionDef(name = "get_the_weather_info", description = "get the weather info") public static String getWeatherInfo( @FunctionParam(name = "city", description = "the city name") String name ) { //we should invoke the third part api for weather info here return "Today it will be dull and overcast in " + name; } } ``` - step 2: invoke the function from LLM ```java public static void main(String[] args) { OpenAiLlmConfig config = new OpenAiLlmConfig(); config.setApiKey("sk-rts5NF6n*******"); OpenAiLlm llm = new OpenAiLlm(config); FunctionPrompt prompt = new FunctionPrompt("How is the weather in Beijing today?", WeatherUtil.class); FunctionResultResponse response = llm.chat(prompt); Object result = response.invoke(); System.out.println(result); //Today it will be dull and overcast in Beijing } ``` ## Communication ![](./docs/assets/images/wechat-group.png) ## Modules ![](./docs/assets/images/modules.jpg)