# image_quality_assessment **Repository Path**: Heconnor/image_quality_assessment ## Basic Information - **Project Name**: image_quality_assessment - **Description**: Indexs for image quality assessment, mainly for Emission Tomography - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 0 - **Created**: 2020-03-31 - **Last Updated**: 2023-04-12 ## Categories & Tags **Categories**: image-processing **Tags**: ImageMetric ## README # [Image Quality Assessment](https://gitee.com/Heconnor/image_quality_assessment) ![](https://img.shields.io/badge/python-v3.7-blue.svg) ![](https://img.shields.io/badge/matlab-2017a-blue.svg) [![](https://img.shields.io/badge/license-MIT-green.svg)](https://gitee.com/Heconnor/image_quality_assessment/blob/master/LICENSE) [![star](https://gitee.com/Heconnor/image_quality_assessment/badge/star.svg?theme=dark)](https://gitee.com/Heconnor/image_quality_assessment/stargazers) [![fork](https://gitee.com/Heconnor/image_quality_assessment/badge/fork.svg?theme=dark)](https://gitee.com/Heconnor/image_quality_assessment/members)
## Table of Contents * [Brief description](#brief-description) * [TODO](#todo) * [Simulated Datasets](#simulated-datasets) * [Requirements](#requirements) * [Test the package](#test-the-package) * [Contributors](#contributors) ## Brief description > This repository contains various methods to assess the quality of an image and to construct simulated dataset to test tomographic reconstruction algorithms. ## Requirements [![h5py](https://img.shields.io/pypi/v/h5py.svg?label=h5py)](https://pypi.org/project/h5py/) [![Pillow](https://img.shields.io/pypi/v/Pillow.svg?label=Pillow)](https://pypi.org/project/Pillow/) [![scikit-image](https://img.shields.io/pypi/v/scikit-image.svg?color=orange&label=scikit-image)](https://pypi.org/project/scikit-image/) [![scipy](https://img.shields.io/pypi/v/scipy.svg?color=orange&label=scipy)](https://pypi.org/project/scipy/) ## TODO > The following metrics are included ([Python](metrics.py) or [MATLAB](metrics.m)): - [x] Signal-to-Noise-Ratio (SNR). - [x] Peak-Signal-to-Noise-Ratio (PSNR). - [x] Root-Mean-Squared-Error (RMSE). - [x] Mean-Absolute-Error (MAE) - [x] Structural Similarity Index (SSIM). - [ ] Normalized Mutual Information (NMI). - [ ] Image Complexity. - [ ] Resolution analysis through Edge-Profile-Fitting (EPF). - [ ] Resolution analysis through Fourier Ring Correlation (FRC). ## Simulated Datasets > The following routines to construct simulated datasets are included: - Create a Shepp-Logan phantom. - Create generic phantoms with analytical X-ray transform. - Rescale image. - Downsample sinogram. - Add Gaussian or Poisson noise. - Add Gaussian blurring. ## Test the package Go inside the folder "data/" and unzip the test dataset: `unzip dataset.zip`. Then, inside the folder "tests/" try to run one by one the test scripts. When a plot is produced during the execution of a test, the script is halted until the plot window is manually closed. ## Contributors [![Heconnor](https://img.shields.io/badge/author-Heconnor-blue.svg)](https://gitee.com/Heconnor) [![arcaduf](https://img.shields.io/badge/author-arcaduf-blue.svg)](https://github.com/arcaduf)