# OneReward **Repository Path**: ByteDance/OneReward ## Basic Information - **Project Name**: OneReward - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-05 - **Last Updated**: 2025-09-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # OneReward Official implementation of **[OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning](https://arxiv.org/abs/xxxx)** [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2508.21066) [![model](https://img.shields.io/badge/🤗-Model-yellow)](https://huggingface.co/bytedance-research/OneReward) [![GitHub Pages](https://img.shields.io/badge/GitHub-Project-blue?logo=github)](https://one-reward.github.io/)

assert

## 🚀 TODO - [x] Release arXiv paper. - [x] Release inference code. - [x] Release `FLUX.1-Fill-dev[OneReward]` and `FLUX.1-Fill-dev[OneRewardDynamic]` mask-guided edit checkpoints. - [ ] Release `FLUX.1-dev[OneReward]` text-to-image checkpoints. - [ ] Future open-source plan. ## Introduction We propose **OneReward**, a novel RLHF methodology for the visual domain by employing Qwen2.5-VL as a generative reward model to enhance multitask reinforcement learning, significantly improving the policy model’s generation ability across multiple subtask. Building on OneReward, we develop **Seedream 3.0 Fill**, a unified SOTA image editing model capable of effec-tively handling diverse tasks including image fill, image extend, object removal, and text rendering. It surpasses several leading commercial and open-source systems, including Ideogram, Adobe Photoshop, and FLUX Fill [Pro]. Finally, based on FLUX Fill [dev], we are thrilled to release **FLUX.1-Fill-dev-OneReward**, which outperforms closed-source FLUX Fill [Pro] in inpainting and outpainting tasks, serving as a powerful new baseline for future research in unified image editing.

Image Fill

Image Extend with Prompt

Image Extend without Prompt

Object Removal

Seedream 3.0 Fill Performance Overview
## Quick Start 1. Make sure your transformers>=4.51.3 (Supporting Qwen2.5-VL) 2. Install the latest version of diffusers ``` pip install -U diffusers ``` The following contains a code snippet illustrating how to use the model to generate images based on text prompts and input mask, support inpaint(image-fill), outpaint(image-extend), eraser(object-removal). As the model is fully trained, FluxFillCFGPipeline with cfg is needed, you can find in [pipeline_flux_fill_with_cfg.py](src/pipeline_flux_fill_with_cfg.py). ```python import torch from diffusers.utils import load_image from diffusers import FluxTransformer2DModel from src.pipeline_flux_fill_with_cfg import FluxFillCFGPipeline transformer_onereward = FluxTransformer2DModel.from_pretrained( "bytedance-research/OneReward", subfolder="flux.1-fill-dev-OneReward-transformer", torch_dtype=torch.bfloat16 ) pipe = FluxFillCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-Fill-dev", transformer=transformer_onereward, torch_dtype=torch.bfloat16).to("cuda") # Image Fill image = load_image('assets/image.png') mask = load_image('assets/mask_fill.png') image = pipe( prompt='the words "ByteDance", and in the next line "OneReward"', negative_prompt="nsfw", image=image, mask_image=mask, height=image.height, width=image.width, guidance_scale=1.0, true_cfg=4.0, num_inference_steps=50, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save(f"image_fill.jpg") ```

input

output

Or you can run the whole inference demo in [demo_one_reward.py](src/examples/demo_one_reward.py) and [demo_one_reward_dynamic.py](src/examples/demo_one_reward_dynamic.py) ```python python3 -m src.examples.demo_one_reward python3 -m src.examples.demo_one_reward_dynamic ``` ## Model ### FLUX.1-Fill-dev[OneReward], trained with Alg.1 in paper ```python transformer_onereward = FluxTransformer2DModel.from_pretrained( "bytedance-research/OneReward", subfolder="flux.1-fill-dev-OneReward-transformer", torch_dtype=torch.bfloat16 ) pipe = FluxFillCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-Fill-dev", transformer=transformer_onereward, torch_dtype=torch.bfloat16).to("cuda") ``` ### FLUX.1-Fill-dev[OneRewardDynamic], trained with Alg.2 in paper ```python transformer_onereward_dynamic = FluxTransformer2DModel.from_pretrained( "bytedance-research/OneReward", subfolder="flux.1-fill-dev-OneRewardDynamic-transformer", torch_dtype=torch.bfloat16 ) pipe = FluxFillCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-Fill-dev", transformer=transformer_onereward_dynamic, torch_dtype=torch.bfloat16).to("cuda") ``` ## Multi-task Usage ### Object Removal ```python image = load_image('assets/image.png') mask = load_image('assets/mask_remove.png') image = pipe( prompt='remove', # using fix prompt in object removal negative_prompt="nsfw", image=image, mask_image=mask, height=image.height, width=image.width, guidance_scale=1.0, true_cfg=4.0, num_inference_steps=50, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save(f"object_removal.jpg") ``` ### Image Extend with prompt ```python image = load_image('assets/image2.png') mask = load_image('assets/mask_extend.png') image = pipe( prompt='Deep in the forest, surronded by colorful flowers', negative_prompt="nsfw", image=image, mask_image=mask, height=image.height, width=image.width, guidance_scale=1.0, true_cfg=4.0, num_inference_steps=50, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save(f"image_extend_w_prompt.jpg") ``` ### Image Extend without prompt ```python image = load_image('assets/image2.png') mask = load_image('assets/mask_extend.png') image = pipe( prompt='high-definition, perfect composition', # using fix prompt in image extend wo prompt negative_prompt="nsfw", image=image, mask_image=mask, height=image.height, width=image.width, guidance_scale=1.0, true_cfg=4.0, num_inference_steps=50, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save(f"image_extend_wo_prompt.jpg") ``` ## License Agreement Code is licensed under Apache 2.0. Model is licensed under CC BY NC 4.0. ## Citation ``` @article{gong2025onereward, title={OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning}, author={Gong, Yuan and Wang, Xionghui and Wu, Jie and Wang, Shiyin and Wang, Yitong and Wu, Xinglong}, journal={arXiv preprint arXiv:2508.21066}, year={2025} } ```